MCA-36 Machine Learning Lab.

General Course Information

Course Code: MCA-36	Course Assessment Methods (internal: 30; external:70)
Course Credits: 2	The internal and external assessment is based on the level
Type: Professional Core Lab.	of participation in lab. sessions and the timely submission
Course Contact Hours: 2 hours/week	of lab experiments/assignments, the quality of solutions
Mode: Lab practice and assignments	designed for the assignments, the performance in VIVA-
	VOCE, the quality of lab. file and ethical practices
	followed.
	The internal examination is conducted by the course
	coordinator. The external examination is conducted by
	external examiner (appointed by the Controller of
	Examination) in association with the internal examiner
	appointed by the Chairperson of the Department.

Pre-requisites: Programming in Java, Python, R and Octave/MATLAB.

About the Course:

In this lab. course, students learn to solve optimization, supervised and unsupervised learning problems using machine learning tools. Students will use machine learning tools available in WEKA, R, Python and Octave etc. The lab experiments involve downloading datasets and applying machine learning techniques on these datasets. The course has a special focus on interpreting and visualizing results of machine learning algorithms.

Course Outcomes: By the end of the course students will be able to:

- CO1. Implement machine learning algorithms using modern machine learning tools.
- CO2. Analyse the trends in datasets using descriptive statistics.
- CO3. Apply descriptive and predictive modelling.
- CO4. **Compare and contrast** machine learning algorithms for a given problem. (describe datasets using descriptive statistics.
- CO5. Create lab records of assignment by incorporating problem definitions, design of solutions, results and interpretations.
- CO6. Demonstrate use of ethical practices, self-learning and team spirit.

List of experiments/assignments

- 1. Install WEKA/R/Python/Octave and learn to use these software packages.
- 2. Two assignments related to classification algorithms and interpreting the results of these algorithms.
- 3. Two assignments related to clustering algorithms and interpreting the results of these algorithms.
- 4. Three assignments on designing neural networks for solving learning problems.
- 5. Two assignments on ranking or selecting relevant features.
- 6. Two assignments on linear regression and logistic regression.
- 7. One assignment to be done in groups.

Note:

The actual experiments/assignments will be designed by the course coordinator. One assignment should be designed to be done in groups of two or three students. The assignments must meet the objective of the course and the levels of the given course outcomes. The list of assignments and schedule of submission will be prepared by the course coordinator at the beginning of the semester.